Ficha de trabalho digital - 7º ano
Números racionais
Adição algébrica
Ex.º 1
1.1) Simplifica a escrita: |
Dica 1
Se antes dos parênteses estiver +, ao eliminar os parênteses mantêm-se os sinais que estão dentro deles. |
Solução
|
|||
1.2) Calcula: |
Dica 1
Na soma de frações, quando o denominador é igual, mantém-se o denominador e somam-se os numeradores. |
Solução
|
|||
1.3) Calcula: |
Dica 1
Como os denominadores são diferentes deve achar-se o m.m.c (3,4) = 12 |
Dica 2
O denominador deve ser 12 e
|
Solução
|
||
1.4) Calcula: |
Dica 1
|
Dica 2
|
Solução
|
Ex.º 2
2.1) Simplifica a escrita: |
Dica 1
Se antes dos parênteses estiver -, ao eliminar os parênteses trocam-se os sinais que estão dentro deles. |
Dica 2
Se antes dos parênteses estiver +, ao eliminar os parênteses mantêm-se os sinais que estão dentro deles. |
Solução
|
||
2.2) Calcula: |
Dica 1
Reduzir as frações com o mesmo denominador.
|
Dica 2
|
Solução
|
||
2.3) Calcula: |
Dica 1
Transformar o numeral misto na fração
|
Dica 2
Determinar o m.m.c.(4,5)=20.
|
Solução
|
Ex.º 3
3.1) Simplifica a escrita: |
Dica 1
Eliminar primeiros os parênteses curvos dentro dos parêntes retos, transformando estes em curvos. |
Dica 2
Eliminar os parênteses curvos através das regras da simplificação da escrita. |
Solução
|
||
3.2) Calcula: |
Dica 1
Reduzir as frações com o mesmo denominador,
|
Dica 2
Determinar o m.m.c.(2,3,5)=30.
|
Solução
|
||
3.3) Calcula: |
Dica 1
Transformar o numeral misto na fração
|
Dica 2
Determinar o m.m.c.(2,5,8)=40.
|
Solução
|
Multiplicação
Ex.º 4
4.1) Calcula: |
Dica 1
Multiplicar os numeradores e multiplicar os denominadores. |
Solução
|
|||
4.2) Calcula: |
Dica 1
Quando se multiplicam números com sinais diferentes o resultado é um número com sinal negativo. |
Solução
|
|||
4.3) Calcula: |
Dica 1
Quando se multiplicam números com sinais iguais o resultado é um número com sinal positivo. |
Solução
|
|||
4.4) Calcula: |
Dica 1
O produto de todos os numeradores é 6. O produto de todos os denominadores é 10. |
Dica 2
O resultado do produto de um nº ímpar de sinais menos é menos. |
Solução
|
Ex.º 5
5.1) Calcula: |
Dica 1
O 2 do numerador pode dividir com o 2 do denominador = 1.
|
Dica 2
Quando se multiplicam números com sinais iguais o resultado é um número de sinal positivo. |
Solução
|
||
5.2) Calcula: |
Dica 1
O 2 do numerador pode dividir com o 2 do denominador = 1.
|
Dica 2
O resultado do produto de um número ímpar de sinais menos é menos. |
Solução
|
||
5.3) Calcula: |
Dica 1
Transformar o 1º numeral misto na fração
|
Dica 2
O resultado do produto de um nº par de sinais menos é mais. |
Solução
|
Ex.º 6
6.1) Calcula: |
Dica 1
Transformar o numeral misto na fração
|
Dica 2
|
Solução
|
||
6.2) Calcula: |
Dica 1
Transformar o numeral misto na fração
|
Dica 2
|
Solução
|
||
6.3) Calcula: |
Dica 1
Transformar o 1º número decimal na fração
|
Dica 2
Transformar o 2º número decimal na fração
|
Solução
|